
©INTEL CORPORATION, 1982

iAPX 186, 286
BENCHMARK

REPORT

Source, Microcomputer Application Engmeerlng

October 1982

Order Number: 210826

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The foliowin(l are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXp, CREDIT, i, ICE, 12-ICE, iCS, iLBX,im, iMMX, Insite, INTEL,
intel, Intelevision, Inteliec, inteligent Identifier™, inteligent
Programming™, Inteliink, iOSP, iPDS, iRMS, iSBC,
iSBX, iSXM, Library Manager, MCS, Megachassis,
Micromainframe, MULTIBUS, Multichannel™ Plug-A-Bubble,
MULTI MODULE, PROMPT, Promware, RMX/BO, RUPI, System
2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC,
MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

* MULTI BUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

©INTEL CORPORATION, 1982

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

iAPX 186/286 BENCHMARK REPORT

CONTENTS

PAGE

iAPX 186 and iAPX 286 (Real Address Mode) Benchmarks ..••••••• 1-16

iAPX 286 Protected System Benchmarks ••••••••••.•••••••••••••. 17-29

iAPX 186 and iAPX 286 (Real Address Mode)

Benchmark Report

In the past, many people have made attempts to characterize the relative
performance of 16-bit microprocessors by using a number of different programs
called benchmarks. These programs show how quickly the processor is able to
handle certain processing tasks. Each type of task uses different processor
instructions with differing frequencies. Because some processor architectures
may lend themselves with greater facility to certain classes of tasks or to
the implementation of higher level languages, the relative performance between
processors measured among different benchmarks varies greatly, just as it does
between processors running different application programs.

Many previously published benchmarks show the relative performance of the 8086
with the 68000. These benchmarks were written both in assembly language and
in higher level languages (e.g. Pascal or C). With the introduction of the
iAPX 186 and iAPX 286, requests have been made to show how well these new
processors perform the same benchmark tasks. All of these benchmark programs
have been run in the Intel applications lab in Santa Clara on iAPX 186 and
iAPX 286 processor evaluation systems. All iAPX 286 numbers quoted in this
report were generated with the iAPX 286 running in real address mode. This is
the mode that is 100% code compatible with the 8086 and iAPX 186. In this
mode it does not perform memory management and protection. The evaluation
systems allow the processors to run at full speed with no wait states, or
allow wait states to be inserted to measure how the performance changes when
wait states are inserted. The actual programs themselves were compiled or
assembled, and real time measurements were made. The results of this work
show that in both assembly language and in higher level langUages, the iAPX
186 and iAPX 286 have superior performance compared to the 680 O.

The benchmark programs used are: Results on Page

1. Digital Filter Benchmarks: from the Nagle and Nelson 7
article in the Feb. 1981 IEEE Micro Magazine.

2. Sieve of Eratosthenes Benchmarks: from the Gilbreath 8
article in the Sept. 1981 BYte Magazine.

3. EON Benchmarks: from the Grappe1 and Hemenway article 9
in April 1981 the EON Magazine.

4. Berkeley Architecture Benchmarks: from the Hansen, et a1. 11
article in the June 1982 Computer Architecture News.

5. Pascal System Benchmarks: from the Intel iAPX 86 System 12
Benchmark Report, Feb. 1982.

6. Intel Assembly Language Benchmarks: from the Intel 16-bit 13
microprocessor benchmark report, August 1979.

These benchmarks compare the performance of the iAPX 186 and iAPX 286 for a
large number of tasks with other 16-bit microprocessors.

-2-

SYSTEM COMPARISONS

Although the exact system configurations used to generate the published
benchmark numbers for non-Intel processors is frequently not known, the speeds
of system components used in 8 MHz systems for maximum performance (i.e. no
wait states) can be compared for the iAPX 186, iAPX 286 and 68000.

A small iAPX 186 configuration is shown in figure 1. Notice that.it requires
address latching, and the system shown allows for data bus bufferlng. If no
wait states are to be inserted into a memory fetch, the system will require a
memory access time from address valid of:

ACCESS TIME (3 x tCLCL)-tCLAV-tOVCL-tIVOV-tIVOV
375- 44- 20- 30- 30
251 ns

These numbers include the time for addresses going valid (tCLAV), data input
setup times (tOVCL) and buffer and latch propagation delays (tIVOV).

A small 68000 configuration is shown in figure 2. The system shown allows for
address and data buffering. Since the 68000 does not have a multiplexed
address/data bus, address latching is not required. For a memory system of
any reasonable size, however, the addresses will require buffering. If no
wait states are to be inserted into a memory fetch, the system will require a
memory access time from address valid of:

ACCESS TIME (3 x tCYC) - tCLAV - tOICL - (2 x tIVOV)
375-44- 20- 30- 30
230 ns

These numbers include the address valid time (tCLAV), the data input set up
time (tOICL) and the buffer delay time.

A small iAPX 286 system is shown in figure 3. This system allows for address
and data buffering. ALthough the iAPX 286 does not have a multiplexed
address/data bus, addresses must be latched to insure that valid addresses for
one bus cycle are held to the memory components until the end of the bus
cycle. If no wait states are to be inserted into a memory fetch, the system
will require a memory acceses time from address valid of:

ACCESS TIME (4 x system clock period) - (read data set up time) -
tSHOV - tIVOV - (STB delay time)

= 250 - 10 - 45 - 30 - 10
= 155 ns

These numbers allow for the address strobe to be generated by TTL right at the
beginning of a bus cycle on the iAPX 286, and include the strobe to output
valid latch delay time (tSHOV) and the buffer delay time (tIVOV).

-3-

A larger iAPX 286 system can use memory interleaving to allow the use of
slower memory components. If the memory system is divided into two banks,
each with their own address latches, and is controlled by logic requiring 5TTL
packages, the memory device access time is 200 ns. This time is derived by:

ACCESS TIME (5 x systems clock period) - (address out delay) -
2 x tIVOV - data setup
(62.5 x 5) - 40 - 60 - 10
202.5 ns

With interleaving, a wait state will be added during about 10% of the memory
cycles.

80186

LATCHED
ADDRESS

MEMORY

iiii WR

T1

8282x3
ALE STB

20
ADD'-AD19

1"6

8286x2

-
DEN OE

DT/R T

iKE

I
2

Figure 1A. Typical Simple 80186 System

T2 T3 T4

DMA (

--~ ~_~_D~_;_~ _________ _

Figure 18. 186 System Memory Timing Diagram

-4-

MEMORY
ADDRESS

DATA

RD WR

112

Af¥

TTL

"

68000

UDS/LDS

A1-A23

BUFFERED
ADDRESS

MEMORY
DATA

PROCESSOR
DATA

8286 x 3
A1-A23

+5L
T

~
OE

-
DO-D15 8286 - T

1-+ OE --
DTACK R/W

I 2

,

Figure 2A. Typical Simple 68000 System

SO S1 S2 S3 S4 S5 S6

Figure 28. 68000 System Memory Timing Diagram

-5-

MEMORY

ADDRESS

DATA

RD WR

f {2

TTL

~ +

S7

tDICL

AD-A23

STB

ADDRESS
lATCHES

MEMORY
DATA

PROCESSOR
DATA

80286

ClK S/l'-1

82284

8282

A8'-A23

r--- STB

8286

00-015

BITE OE T

A8',V

-

TTl+
i...-.-+ 82288

Figure 3A. Typical 286 System

VALID ADDRESS

ISD~-r----------~

~-----MEMORY ACCESS TIME ------+I

Figure 3B. 286 System Memory Timing Diagram

-6-

MEMORY

ADDRESS

DATA

Rii Wii

2

VALID DATA

DIGITAL FILTER BENCHMARKS

In the February, 1981 edition of IEEE Micro Magazine (pp. 23-41), H. T. Nagle
and V. P. Nelson at Auburn University presented the results of some work they
had been doing using l6-bit microprocessors in digital filters. They
discussed methods and algorithms for various types of digital filters, and
presented benchmark data for a particular instance of an eighth-order cascaded
filter. In the article, performance measurements were run on the 8086, the
Motorola 68000, the Texas Instruments 9900, the Zilog Z8000, and the Fairchild
9445 (a bipolar machine), all running (presumably) with no wait states. All
programs for this benchmar:.~~re_written in assembly language. -

These benchmark programs have also been run in the Intel applications lab on
both an iAPX 186 evaluation board (with no wait states) and on an iAPX 286
evaluation board (with no wait states, a similar configuration to that shown
in figure 1). The clock speeds for the various processors used are:

68000
Z8000
8086
9900
9445
186
286

8 MHz
4 MHz
5 MHz
3.3 HMz
15 MHz
8 MHz
8 MHz

The performance of the iAPX 186 and iAPX 286, along with the ~erformance
quoted of the processors in the article for the procedures called by the
digital filter program (in microseconds) are shown in the table below.

The various subroutines shown below perform the following tasks:
input: performs writes to a memory-mapped I/O device and polls the device
until it receives acknowledgement (the benchmark assumes that the
processor receives positive acknowledgement immediatly).

outp ld: multiplies samples by a constant, then adds another constant to
the result of this multiplication

delay ld: shifts a memory array from one location to another

pre ld: performs multiple multiplies and adds as part of the filter
implementation

tot sample time: the time it takes for all filter processing between
samples

procedure 68000 Z8000 8086 9900 9945 186
input 10.25 T5.5 1"4.8 24.2 2."8 9':"5
outp ld 65.5 127.25 174.4 211.5 40.8 57
delay_ld 32 30.25 32.8 135.8 33.2 13.5
pre_ld 194.5 380.25 582.4 559.4 108 149.5

tot sample 327usec 584usec 857.6usec 1000usec 194.9usec 273usec
time

-7-

286
7.9
34.6
9.9
80.4

139.9

It indicates the

The reasons for the improvements of the iAPX 186 and iAPX 286 are:

1. the outp ld and pre ld programs use the multiply instruction
extensively, which Is much faster on the iAPX 186 and iAPX 286 than
it is on the 8086 and 68K

2. the delay ld routine merely copies one area of memory to another area
of memory-using a string move instruction. Since string moves go at
the bus bandwidth on the iAPX 186, this routine was much faster with
the iAPX 186. The reason the 68000 number for this routine is so
large is that the 68000 does not have a string move instruction,
therefore requiring a software loop to perform this operation.

SIEVE OF ERATOSTHENES

In the September, 1981 edition of BYTE, Jim Gilbreath presented the results of
benchmarking the "Sieve of Eratosthenes" on various microcomputers in various
languages. This algorithm computes prime numbers without performing divisions
or multiplications by selectively eliminating non-prime numbers from an array
of all numbers within the number range selected. In the article, the author
quoted performance numbers for both 8 and 16 bit machines (from the lowly 6502
to the lofty VAXll/780).

These benchmark programs have been run in the Intel applications lab on the
iAPX 186 evaluation board (with no wait states) and on the iAPX 286 evaluation
board (with no wait states). All the other microprocessor numbers are quoted
directly from the BYTE article. For the iAPX 186 and iAPX 286, the Mark
Williams C complier was used. The benchmark was changed slightly to use
register variables.

The performance of iAPX 186 and real address mode iAPX 286, along with the
performance given for a few of the more significant processors (in seconds)
are given in the table below.

-8-

processor 1 anguafe time
68000(8MRz) assemb y I.l2
68000 Moto Pascal 14.0

8086(8MHz) assembly 1.90
8086(5MHz) Intel Pascal 9.05

POPll/70 C 1052
POPll/40 C 6.10

186(8 MHz) assembly 1.065
186(8 MHz) C 2.241
186(8 MHz) Intel Pascal (V2.0) 3.405

286(8 MHz) assembly .517
286(8 MHz) C 1. 14

VAXll /780 C 1.4

These performance numbers show that with equivalent clock speeds, the iAPX 186
outperforms the 68000 in both assembly language programs and Pascal programs.
It also shows that the 8086 (and hence the iAPX 186 and iAPX 286) Pascal
performance is better than the 68000 Pascal performance. This benchmark is
not computationally intensive, rather it is memory intensive. This is
apparent when comparing the iAPX 186 and iAPX 286 numbers. It is also
interesting to note that the performance of the iAPX 286 is actually better
than the VAXll/780!

EON BENCHMARKS

In the April, 1981 edition of EON, Robert Grappel and Jack Hemenway present
the results of running a subset of the Carnegie-Mellon benchmark programs on
the 8086, the 68000, the Z8000 and the LSIll/23. Each of these seven programs
was written entirely in assembly language. Each of these programs has Slnce
been enhanced (to use the same algorithms as used on the 68000) and re-run on
the 8086, the iAPX 186, and the iAPX 286 using evaluation systems in the Intel
applications lab with a variety of wait states. The seven programs are:

A. I/O interrupt kernel: shows interrupt response time for a four level
interrupt system 1l.e. there are four different interrupt sources
with different priority levels).

B. I/O kernel with FIFO processing: queues interrupt processing requests
and does a small amount of processing.

E. Character-string search: searches a string for a certain character
pattern

-9-

F. Bit set, reset, test: checks the bit manipulation capabilities of the
processor; sets, resets, and tests arbitrary bits in an area of memory

H. Linked-list insertion: inserts five items into a linked list

I. Quicksort: implements a quicksort algorithm sorting 100 16-byte long
records

K. Bit-matrix transposition: exercises bit manipulation capabilities,
transposes a 7x7 bit array

The number of clock cycles (with no wait states) determined by running the
routines on all the processors required to execute the benchmarks are given in
the table below.

Benchmark 8086 80186 80286 68000 Z8002
A 45'l)" ~ "'Z21) "J2tJ "2"5lJ"
B 3816 3448 1838 3216 2250
E 2053 2024 1050 2255 1140
F 1401 1128 727 696 740
H 1936 1504 865 1210 1220
I 246,417 203,552 118,117 173,482 133,000
K 3945 2888 1879 3660 3380

None of these routines use multiplies or divides, they mainly manipulated bits
or words in memory. The speedup of the iAPX 186 over the 8086 is caused
mainly by the speedups of the effective address calculation, speedups of
multiple bit rotations, and by the new instructions saving and restoring the
general purpose registers. The iAPX 286 adds a faster memory interface in
addition to these other enhancements.

Benchmark F was mainly bit manipulation where the bit checking, setting and
clearing instructions of the 68000 could be directly used. Note, however,
that the 68000 did much worse in comparison with benchmark K, where it had to
do bit swapping. This shows that even though an architecture may contain a
class of instructions which allow for higher performance in a small number of
applications, these instructions must be of sufficient generality to cause an
overall performance improvement.

-10-

BERKELEY ARCHITECTURE BENCHMARKS

In the June, 1982 edition of Computer Architecture News, Paul Hansen, et al.
at Berkeley presented a series of four programs used to benchmark Intel's 432,
the 8086, the 68000 and the VAXll/780 for programs written in Ada, C and
Pascal. All the numbers shown herein are for programs written in Pascal. The
four benchmarks used are:

string search:

si eve:

puzzle:

acker:

searches 120 character string for a 15 character
substri ng

the Sieve of Eratosthenes (similar to the BYTE
benchmark, mentioned earlier)

a "bin packing program that solves a simple puzzle"

a program which computes the Ackerman function. This
function is heavily recursive, and is used to show
procedure calling overhead.

The machines used for these benchmarks are:

A VAXll/780 running 4.1 BSD UNIX

An 8 MHz 68000 running in an EXORMACS (causing four wait states, two for
memory management and 2 for slow memory) with Motorola Pascal.

A 16 MHz 68000 stand alone system with no wait states and Motorola Pascal.

A 5 MHz 8086 in the series III development system with 1-3 wait states.

The 8 MHz iAPX 186 evaluation board in the Intel applications lab with a
variety of wait states.

The 8 MHz iAPX 286 design test bed, program running in real address mode.

the processing time for the various processors (in milliseconds) are:

machine language search sieve puzzle acker
VAX11/780 Pascal ~ ~ 11900 7800

68000(8 MHz,4ws) Pascal (V2.0) 5.3 810 32470 11480
68000~8 MHz,Ows) Pas cal (V2 • 0) 2.6 392 18360 5500
68000 16 MHz,Ows) Pascal (V2.0) 1.3 196 9180 2750

8086(5 MHz,2ws) Pascal (X125) 7.3 764 44000 11100

186(8 MHz,Ows) Pascal(V2.0) 2.7 314 16012 4114
286(8 MHz,Ows) Pascal (V2.0) 1. 29 175 9157 2175

-11-

In all but one case, the speed values for an 8 MHz 68000 with no wait states
(calculated by doubling the values quoted for the 16 MHz 68000) are worse than
the iAPX 186 8 MHz 0 wait state value. This shows that Pascal performance of
the 186 with Intel Pascal is better than even the newest Motorola Pascal on
the 68000. Also, on 3 of the 4 benchmarks, the 4 ws performance of the 68000
lS less than half the 0 ws performance quoted in the article, which makes the
numbers suspect.

It is also interesting to note that the iAPX 286 once again shows superior
performance the the VAXll/780, and the 8 MHz iAPX 286 shows higher performance
than the 16 MHz 68000!

PASCAL BENCHMARKS

In the February, 1982 iAPX 86 System Benchmark Report (published by Intel),
Mark Moore and John Crawford present the results of running various Pascal
routines on both the 8086 (using Intel Pascal V2.0) and the 68000 (using
Motorola Pascal Vl.2).

These benchmark programs have been run in the Intel applications lab on the
iAPX 186 evaluation board and on a iAPX 286 evaluation board using Intel
Pascal V2.0. The hardware used to generate these results assumes an 8 MHz
processor running with no wait states in each instance.

The routines implemented are:
GCD: This program computes the Greatest Common Denominator of two integers
using a recursive function. Function overhead and the MOD oeprator are
tested by this benchmark.

Integer Matrix Multiply: This program uses a simple row/column inner
product method to compute the product of two matrices. The elements of
the matrices are integers. The program tests control structures, array
references and integer arithmetic. The timind data presented was taken
using a 32x32 matrix.

Bubble Sort: This program performs a bubble sort on 1000 numbers. Bubble
Sort extensively tests control structures, relational expressions and
array references.

Queens: This program lists all possible combinations of non-attacking
queens on an NxN chessboard. The timing data is based on a 9x9
chessboard. This program tests control structures, boolean expression
evaluation and evaluates the code generated for certain commonly used
statements (for example A := A + 1).

-12-

The performance of the iAPX 186 and real address mode 286 compared to the 8086
and 68000 are shown in the table below. The numbers reflect execution time in
seconds.

routine
GCD

286
TT.1

Integer Matrix Multiply
Bubble Sort

8086
~
20.6
14.6
20.8

68000
TOO:b
68.2
33.1
54.7

186
"2T."6
12.5
11. 0
13.9

6.9
5.6
7.2 Queens

These numbers clearly show the Pascal implementation available on the iAPX
186. iAPX 286 and 8086 to be superior to the implementation on the 68000. For
a description of each of these routines. please see the iAPX 86 System
Benchmark Report. Feb. 1982 (Intel Literature Order No. 210352).

Other than the general performance advantage of iAPX 86. 186. 286 over the
68000 when executing high level 1anguanes. specific reasons for the
performance improvements of the iAPX 186. 286 over the 68000 are:

2.

The GCD routine uses modulo division to determine the greatest common
denominator of two numbers. Since it uses the processor's divide
instruction (which is much quicker on the iAPX 186 than the 68000)
the performance of the iAPX 186 is considerably better.

The MMULT routine uses integer multiplication extensively. Again.
since this instruction is much quicker on the iAPX 186 than the
68000. the performance improvement of this routine is considerable.

INTEL STANDARD ASSEMBLY LANGUAGE BENCHMARKS

In the August. 1981 8086 16-bit Microprocessor Benchmark Report (Intel
Literature Order No. 205931). Hal Kop developed a number of routines to be
used to benchmark microprocessors. In a later revision. he quoted numbers for
both the 10 MHz 8086 and the 8 MHz 68000. All of these routines are written
in assembly language for the two processors.

These benchmark programs have been run in the Intel applications lab on the
iAPX 186 evaluation board and on the iAPX 286 evaluation board. The
performance of the iAPX 186 and the performance quoted in the benchmark report
(with all numbers normalized to show 8 MHz performance of the processors with
a variety of wait states) is shown in the table below.

The routines implemented are:
1. Automated Parts Inspection: The automated parts inspection program
controls two 8-bit D/A converters (X and Y control) and reads a gray shade
signal from a 12-bit AID converter. Both DIA and AID converters are
interfaced to an image-dissector camera. For each of the 16.384 (128 x
128) points. the measured gray shade signal is compared with a known good
gray shade signal (stored in memory) to determine if it is within
tolerance. If it is, the inspection continues. Otherwise. a reject part
signal is generated. This benchmark assumes that all 16.384 points are
within tolerance.

-13-

2. Block Translation: The block translation software translates each
character from an EBCDIC buffer to ASCII and stores the translated
character in an ASCII buffer. The translation operation is terminated
either when an EaT character is detected or when all characters in the
EBCDIC buffer have been translated and stored. This benchmark assumes
that the EBCDIC buffer contains 132 characters, none of which is an EaT.

3. Bubble Sort: The bubble sort program sorts a one-dimensional array
contalning 16-bit integer elements into numerically ascending order using
the exchange (bubble) sort algorithm. This benchmark assumes that the
array contains 10 integers which are initially arranged in descending
order.

4. XV Graphics Transformation: The XV transformation software scales
(expands or compresses) a selected graphics window containing 16-bit
unsigned integer XV pairs. Each X data value is offset by Xo and
multiplied by a fractional scale factor while each V data value is offset
by Va and multiplied by the same fractional scale factor. This
benchmark assumes the selected window contains 16,384 XV pairs.

5. Reentrant Procedure: The reentrant procedure benchmark tests processor
features which are useful to implement reentrant procedures. Three input
parameters are passed by value to the procedure. Prior to the call, the
first parameter is in one of the general registers while the second and
third parameters are stored in memory locations. Upon entry, the
procedure preserves the state of the processor. It assumes that the
procedure uses all general registers. Next the procedure allocates
storage for three local variables. The procedure then adds the three
passed parameters and stores the result in a local variable. Upon exit,
the state of the processor is restored.

-14-

routine no. wait states 8086 68000 186 286
automated parts inspct(seconds) 0 .834 .696 .381 .217

1 .883 .762 .432 .254
2 .924 .827 .465 .289
3 .979 .893 .504 .346

block trans1ate(msec) 0 .93 .883 .870 .415
1 1.04 1.083 .930 .466
2 1.14 1.283 .997 .565
3 1.27 1.483 1.130 .697

bubble sort(msec) 0 1. 14 .979 .921 .494
1 1.26 1. 184 1.038 .632
2 1.33 1.390 1.180 .778
3 1.46 1.595 1.340 .945

X-V transformation(seconds) 0 1.4 .975 .532 .285
1 1.44 1.010 .582 .317
2 1.48 1.044 .612 .346
3 1.52 1.079 .651 .385

re-entrant procedure(usec) 0 39.0 56.50 32.4 17.0
1 43.0 69.13 37.5 21.4
2 49.0 81.75 43.4 27.5
3 55.0 94.38 50.2 33.3

These numbers show that the iAPX 186 is greatly superior to the 68000 on
computationally bound programs (those with many multiplies or divides). and is
at least equivalent to the 68000 for many other classes of programs written in
assembly language.

The reasons for the performance improvements of the iAPX 186 over the 68000
are:

1. Both the automated parts inspection and the X-V transformation are
very computationally bound and use the multiply instruction
extensively. Because of the high-speed CPU. the iAPX186 and iAPX286
both show a significant performance advantage in these two
benchmarks. Because the pre-fetch queue in the Intel processors
allowing parallel instruction execution and fetching. their
performance remains high even when wait states are added to memory
accesses.

2. The block translate and the bubble sort routines perform mainly
memory accesses. therefore the performance improvement of the iAPX
186 over the 68000 in these two routines are because of the improved
effective address calculation. In the iAPX 286. the performance
improvement is caused by the higher speed bus. allowing more bytes to
be moved from one location to another in less time.

-15-

CONCLUSIONS

Each of these benchmarks (except the Intel standard benchmarks and Pascal
system benchmarks) were generated by outside parties. In all but one
instance. they show 186 Pascal performance to be much superior to the 68000
Pascal performance (even when the new Motorola Pascal is used). In addition.
the 186 assembly language performance is shown to be superior or equivalent to
the 68000 assembly language performance in most cases. Since the iAPX 286 is
an even higher performance processor than the iAPX 186. it is not suprising to
find that the iAPX 286 performance surpasses the 68000 by a considerable
margin on pratically all benchmarks shown. Indeed. on the few occasions where
benchmark comparisons were made. the iAPX 286 outperformed the VAXll/780
superminicomputer!

-16-

iAPX 286 PROTECTED SYSTEM BENCHMARK REPORT

This is a report on the relative performance of two protected microprocessor
systems, the Intel iAPX 286 and Motorola MC68000 with MC68451. The iAPX 286
(80286 component number) is a microprocessor with memory management and
protection integrated on chip. The MC68000 microprocessor requires the
Motorola MC68451 memory management unit for protection and memory management.

For an equivalent system's level comparison, both processors ran the same
programs with similar memory systems. To keep the programs the same, either
the same PASCAL source or same assembly language algorithm was used. Both
systems use the highest clock frequency available. System timing was
determined by manufacturer data sheets.

The 80286 execution times were measured by Intel on an 80286 component system
operating at 0-3 wait states. The 68000 system execution times were taken
from the published benchmark reports.

Operating the MC68000L8 with the MC68451L8 MMU at 8 MHz requires two wait
states to function with the same memory system as the 8 MHz 80286. The effect
of two wait states on the 68000 system has been extrapolated from earlier
studies and incorporated in the numbers given here.(l} Both O-wait and
2-wait execution times are shown for the MC68000 system execution times.

Five different suites of programs were used which cover a wide range of
application processing requirements from numerics, subroutine calls, data
manipulation, and sorting. Both assembly language and PASCAL programs were
used. Four of the benchmark suites were developed outside Intel. The results
were published in EON magazine, com~uter Architecture News, Byte Ma~azine~ and
IEEE Micro Magazine. The f1fth SU1 e 1S an Intel standard benchmar. AI I the
sources of the benchmark suites included execution times for the MC68000
microprocessor.

BENCHMARK DESCRIPTION

The benchmark programs used are: Results on Page

1.

2.

3.

4.

5.

Di{ital Filter Benchmarks: from the Nagle and Nelson
ar 1cle 1n the Feb. 1981 IEEE Micro Magazine.

Sieve of Eratosthenes Benchmarks: from the Gilbreath
art1cle 1n the Sept. 1981 Byte Magazine.

EON Benchmarks: from the Grappel and Hemenway article
1n the October 1981 EON Magazine.

Berkeley Architecture Benchmarks: from the Hansen,
et al. art1cle 1n the June 1982 Computer Architecture News.

Intel Assembly Language Benchmarks: from Hal Kop's 16-bit
m1croprocessor benchmark report, August 1979.

-17-

22

23

24

26

27

MC68000 WITH MC68451 SYSTEM CONFIGURATION

The Motorola MC68451 MMU component provides memory protection and management
to the MC68000 microprocessor. The fastest currently available speed
selection of the MC68451 is 8 MHz. Since the CPU must operate at a frequency
no faster than that allowed by the MMU, the 68000 microprocessor was operated
at 8 MHz also. Both components are packaged in .9x3.1 inch 64-pin DIPs.

All timing, clock counts, and operation definitions for the 68000 system were
taken from the Motorola MC68000L8 advanced data sheet #ADI-814R2 and Motorola
MC68451L8 advanced data sheet #ADI-872, both published in 1981.

As shown in figure 3, the MC68451 MMU is connected in the address path between
the CPU and the memory system. Address latches are required at the physical
address outputs of the MMU since these pins also serve as a bidirectional data
bus on memory cycles directed to the MMU after address translation. The MMU
HAD signal controls use of the address latches.

ClK
MC68000

CPU MC68451
MMU(S)

ClK ClK 8283

A23-8 A23-8 PAD,5-0

STB

FC2-0 FC2_0

HAD
ASI ASI

CS

A7-1

BERRI

DTACK/t------------------------...J

Figure 3. MC68000 with MC68451 Configuration

-18-

The MMU checks all addresses used by a program to see if they are valid.
Valid addresses are then translated to a different address which is presented
to the memory system. If an address is invalid, the MMU aborts the memory
cycle and interrupts the program. Invalid addresses are normally assumed to
be a result of programming errors.

The MC68451 MMU is a slave peripheral requiring the CPU to load all registers
needed for its operation. The CS input tells the MMU when the CPU wants to
send commands to it or inquire about its status. Data transfers directed
towards the MMU require 8-20 wait states. Such delays are considered a part
of the time required to program the MMU for a task switch.

Each MC68451 MMU supports up to 32 segments in the logical address space.
Each segment may have a unique read/write and physical address attribute for
its region of logical address space. The MMU allows segments to be of 16
sizes: all powers of two between 28 to 224 bytes. Segments start on
addresses which are exact multiples of the segment size.

The MC68000 CPU must predefine all logical memory segments mapped by the MMU
to a physical memory segment. If a logical address presented to the MMU by
the CPU does not lie in a segment defined earlier, or if the segment does not
allow the type of access requested, that address is considered invalid. Any
such invalid access is reported to the CPU by the MMU FAULT/ signal connected
to the CPU BERR/ input. The BERR/ input will terminate the current memory
cycle and abort the associated instruction.

The address space for each task will normally require 5-7 segments in an MMU.
A 68000 system with one MC68451 MMU component can execute about 5 tasks along
with the operating system without requiring the MMU segment entries be changed
during a task switch.

However, many multi-tasked systems have more than 5-7 tasks executing at one
time. One MMU can not keep all the address space information for all the
running tasks. Either the operating system must often transfer task address
space information into and out of the MMU segment entries as tasks are run or
more MMUs must be added to support the programs.

Most of the benchmarks for the 68000 system assume all memory management
information is already in the MMU. This is a best case assumption for a
system configuration using one MMU. With multiple tasks executing in a system
with one MMU, it will be necessary to occasionally change the MMU contents
when a new task is started. The benchmarks must reflect the time required to
manage the MMU as well as execute the programs.

About 520 usec is required to load the MC68451 MMU with 5 segments and perform
a MC68000 task switch at 8 MHz with two wait states. To account for this MMU
reload time, two benchmarks which require task switchs include time to reload
the MMU entries. The EDN interrupt benchmarks A and B were assigned an 8% MMU
reload hit rate.

-19-

iAPX 286 CONFIGURATION

The iAPX 286/10 configuration assumed is shown in figure 4. The 80286 is
packaged in a 68-pin JEDEC approved type A chip carrier requiring about 1
square inch of board area. No external MMU devices are required since the
80286 has the memory management hardware integrated into the component. The
iAPX 286 information was obtained from the Intel iAPX 286/10 advanced data
sheet (Order Number 210253-001) published in January 1982 •

..l\.,

0 D 80286

-V
CIS A

/ /

8283 ~
/

A

82288 f-- 82284 a
iiRoY ~

V "'J'
DO DI A CIS

/'-- RAS
8207 256K BYTE MEM.

'r- CAS
3284K DRAMS

Figure 4. iAPX286 Configuration

The memory management and protection hardware of the iAPX 286 provides a
superset of the functions of the MC68451 MMU. The 80286 integrated MMU and
protection hardware checks and translates the logical addresses that programs
deal with into physical addresses. The segmented structure of the logical
address space is directly mapped into a segmented physical address space.

-20-

The 80286 CPU component allows up to 8191 segments to be accessed by any
program without requiring extra components or operating system intervention
while the program runs. All memory management information is automatically
fetched from memory while the CPU executes a program. The 80286 execution
times in all the programs described later include the time required for memory
management information transfers.

MEMORY ACCESS TIME COMPARISONS

For most microprocessor systems. the memory costs regularly exceed the cost of
the CPU. As a result it is vital to compare the relative performances of
these processors when operating with comparable memory systems. The processor
which uses its memory system most effectively will always have a significant
price-performance advantage.

Figure 4 shows an 80286 system using the 8207 dynamiC RAM controller and
64-2164A dynamic RAMs. This system can operate at 8 MHz with 0 wait states
using lOOns DRAMs.

The 68000 system in figure 3 requires a TTL based dynamic RAM controller. Two
wait states are required to operate with DRAMs to allow sufficient time to
respond to a memory request. The translation delays of the MC68451L8 allow
only 38 ns from translated address valid at the outputs of the MC68451 to
return DTACK to the 68000 at 8 MHz and 1 wait state. This is not enough time
for the address to be decoded and DRAM state logic to decide whether to begin
the memory cycle or not. For most DRAM systems. two wait states will be
required to allow sufficient ready response time.

The 80286 memory bus is pipelined. As a result. the 8207 memory controller
has sufficient time to respond to memory requests with "not-ready" without
requiring adding wait states to all memory cycles. The fast cycle time of the
80286 bus is automatically handled by the 8207 via interleaving. The 8207
controlled memory system is organized into 2 or 4 banks so that the RAS
precharge time of one DRAM bank is overlapped with memory cycles occurring in
another bank. The following table summarizes the performance of the two
systems. The numbers shown below are measured from address valid at the CPU
or MMU pins to either data or ready valid at the CPU pins.

Memory System Comparisons

8 MHz 80286 8 MHz MC68000L8 + MC68451L8
O-wait 2-wait

Address access time 242 ns 293 ns

Ready response time 170 ns 163 ns

Maximum Bus Bandwidth 8 Mbyte/sec 2.66 Mbyte/sec

-21-

DIGITAL FILTER BENCHMARKS

In the February, 1981 edition of IEEE Micro Magazine (pp. 23-41), H. T. Nagle
and V. P. Nelson at Auburn University presented the results of some work they
had been doing using 16-bit microprocessors in digital filters. They
discussed methods and algorithms for various types of digital filters, and
presented benchmark data for a particular instance of an eighth-order cascaded
filter. In the article, performance measurements were run on the 8086, the
Motorola 68000, the Texas Instruments 9900, the Zilog Z8000, and the Fairchild
9445 (a bipolar machine), all running (presumably) with no wait states. This
program was written in assembly language.

The performance of the 68000 with 68451 and 286 for the procedures called by
the digital filter program (in microseconds) are shown in the table below.

The various subroutines shown below perform the following tasks:

input:

outp ld:

delay ld:

pre ld:

total
sample
~

Procedure

Filter
Input
Outp ld
Delay ld
Pre ld

Total Sample
Time

Normal i zed
Performance

Performs writes to a memory-mapped I/O device and polls the
device until it receives acknowledgement (the benchmark
assumes that the processor receives positive acknowledgement
immedi at ly) •

Multiplies samples by a constant, then adds another constant
to the result of this multiplication

Shifts a memory array from one location to another

Performs multiple multiplies and adds as part of the filter
implementation

The time it takes for all filter processing between samples

8 MHz 8 MHz (2) 8 MHz (3)
80286 68000+68451 68000+68451
O-wait O-wait 2-wait
4.1 usec 24.7 usec 32.1 usec
7.9 usec 10.3 usec 13.4 usec
34.6 usec 65.5 usec 85.2 usec
9.9 usec 32 usec 41.6 usec
80.4 usec 194.5 usec 252.8 usec

139.9 usec 327.0 usec 425.1 usec

(1.0) (.42) (.32)

-22-

The most important number shown is the total sample time. It indicates the
amount of time it takes the processor to process a single data sample.
Because each data sample must be processed sequentially, this number sets an
upper limit to the sampling speed, and therefore the upper frequency limit of
the filter. The higher this limit, the greater the number of applications to
which the filter may be applied. With the performance numbers generated, the
upper frequency limit of this digital filter for the 68000 is 2352 Hz and for
the 286 it is 7304 Hz (310% better than the 68000).

The reasons for the 286 performance advantage is:

1.

2.

The outp ld and pre ld programs use the multiply instruction
extensively, which is much' faster on the 286 than it is on
the 68000.

The delay ld routine merely copies one area of memory to
another area of memory using a string move instruction. The
string move instruction of the 80286 operates at the maximum
bus bandwidth which is 3 times that of the 68000 system.
The 68000 does not have a string move instruction, therefore
requiring a software loop to execute this operation.

SIEVE OF ERATOSTHENES

In the September, 1981 edition of BYTE, Jim Gilbreath presented the results of
benchmarking the "Sieve of Eratosthenes" on various microcomputers in various
languages. This algorithm computes prime numbers without performing divisions
or multiplications by selectively eliminating non-prime numbers from an array
of all numbers within the number range selected.

This algorithm was coded up in assembly language and run on the 8 MHz 68000.
An assembly language version of the benchmark was also run on the 80286. The
execution times are shown below:

Processor: 8 MHz 80286 8 MHz 68000 (2) 8 MHz 68000+68451(3)
o - Wait o - Wait 2 - Wait

Execution .517 sec 1.12 sec 1.456 sec
Time

Normalized (1.0) (.46) (.35)
Execution Time

The 286 higher performance in this benchmark reflects the general performance
advantage which the 286 has over the 68000 in performing simple operations
such as load, store, test, etc.

-23-

EDN BENCHMARKS

In the April and October, 1981 editions of EDN, Robert Grappel and Jack
Hemenway present the results of running a subset of the Carnegie-Mellon
benchmark programs on the 8086, the 68000, the Z8000 and the LSI-ll/23. Each
of these seven programs was written entirely in assembly language. The
program for running each of these programs has since been enhanced for the
protected mode iAPX 286 and to assure the same algorithm is used, and re-run
on the 286. The seven programs are:

A. I/O interrupt kernel: shows interrupt response time for a four
level interrupt system (i.e. there are four different interrupt
sources with different priority levels).

B. I/O kernel with FIFO processing: queues interrupt processing
requests and does a small amount of processing.

E. Character-string search: searches a string for a certain
character pattern

F. Bit set, reset, test: checks the bit manipulation capabilities
of the processor; sets, resets, and tests arbitrary bits in an
area of memory

H. Linked-list insertion: inserts five items into a linked list

I. Quicksort: implements a quicksort algorithm sorting 100 16-byte
long records

K. Bit-matrix transposition: exercises bit manipulation
capabilities, transposes a 7x7 bit array

The two interrupt benchmarks, (A and B), require that the memory management
hardware retain the address space context of both the program interrupted and
that of the interrupt handler. Since the MC68451 can not normally retain all
the memory management information required for all tasks, some task switches
must change entries in the MMU.

To account for the required task switch time of the MC68451, both benchmarks A
and B have a time added for reloading the MMU. The time required to change 5
entries in the MMU and perform a task switch is about 400 usec at 8 MHz and
O-wait or 520 usec at 8 MHz and 2-waits. An 8% MMU reload hit rate is
assumed, or in other words, 92% of task switches don't require an MMU reload.

Since benchmark B requires that 12 interrupts be serviced, it is assumed one
MMU reload (400 usec) will occur in it. This makes the O-wait execution time
of benchmark B 402 usee + 400 usec. Benchmark A is assigned one third of an
MMU reload time (133 usec) since it has 4 interrupts. Benchmark A execution
time becomes 40 usec + 133 usec.

-24-

EDN Benchmark Execution Times

8 MHz 80286 8 MHz 68000(2) 8 MHz 68000+68451(3)
a - Wait a - Wait 2 - Wait

A: I/O Int. 78.6 usec 173 usec 223.8 usec
(1. 0) (.45) (.35)

B: FIFO Int. 310 usec 802 usec 1037.9 usec
(1. 0) (.39) (.30)

E: String Search 131.3 usec 281.9 usec 366 usec
(1. 0) (.47) (.36)

F: Bit Manipulation 90.9 usec 87 usec 113 usec
(1. 0) (1. 04) (.80)

H: Link List Insertion 108.1 usec 151.2 usec 197 usec
(1.0) (.71) (.55)

I: Quicksort 20.5 ms 21.68 ms 28.2 ms
(1. 0) (.95) (.73)

K: Matrix Transpose 234.9 usec 487.5 usec 634 usec
(1.0) (.48) (.37)

Normalized Execution 1.0 .64 .49
Time

The performance advantage of the 286 was strongest in benchmarks A and B
(interrupt intensive) because no software overhead is required to manage the
286's internal MMU. The 286's performance in the string search benchmark (E)
was also helped by the 286 string scanning instructions.

The 68000 was strongest in benchmark F due to its bit manipulation
instructions; however, when dealing with a more realistic bit addressing and
manipulation program (benchmark K), the general performance superiority of the
286 shows through.

-25-

BERKELEY ARCHITECTURE BENCHMARKS

In the August 1982 edition of Computer Architecture News, Dave Patterson at
Berkeley University present a series of four programs used to benchmark the
iAPX 286, the 8086, the 68000 and the VAX 11/780 for programs written in
Pascal. The programs used for the iAPX 286 were run in iAPX 86 real address
mode. The following iAPX 286 execution numbers were measured in protected
mode and use the enhanced instruction set of the iAPX 286. The four
benchmarks used are:

string search: Searches 120 character string for a 15 character substring
sieve: The Sieve of Eratosthenes (similar to the BYTE benchmark,

mentioned earlier)
puzzle: A bin packing program that solves a simple puzzle.
aCker: A program which computes the Ackerman function. This

function is heavily recursive, and is used to show
procedure calling overhead.

The machines used for these benchmarks are:

A VAX 11/780 running 4.1 BSD UNIX

A 16 MHz 68000 stand alone system with no wait states and Motorola Pascal
V2.0. The execution time for this system was doubled to account for
slower maximum clock frequency of the 8 MHz MC68451.

The 8 MHz 80286 stand alone system with no wait states.

The processing time for the various processors (in milliseconds) are:

Machine Language search sieve puzzle acker Normalized
Average

8 MHz 80286 Pascal (V2. 0) 1.29 175 9157 2175
O-wait (1.0) (1.0) (1.0) (1.0) (1.0)

8 MHz 68000(2) Pasca1(V2.0) 2.6 392 18369 ~500) O-wait (.50) (.45) .50 .40 (.46)

8 MHz 68000(3) Pasca1(V2.0) 3.38 509 23868 7150
2-wait (.38) (.34) (.38) (.30) (.35)

VAX 11/780 Pascal 1.6 220 11900 7800
(.81) (.80) (.77) (.28) (.67)

This shows that Pascal performance of the 286 with Intel Pascal V2.0 is almost
three times of Motorola Pascal V2.0 on the MC68000. It is also interest;ng-tO
nore-tnar-fhe 286 shows superior performance than the VAX 11/780 for these
programs.

-26-

INTEL STANDARD ASSEMBLY LANGUAGE BENCHMARKS

In the August, 1981 8086 16-bit Microprocessor Benchmark Report, Intel
developed a suite of programs to be used to benchmark microprocessors. In a
later revision, numbers for both the 8 MHz 8086 and the 8 MHz 68000 were
published. All of these routines are written in assembly language for the two
processors.

The routines implemented are:
1. Automated Parts Inspection: The automated parts inspection program

controls two 8-bit D/A converters (X and Y control) and reads a gray
shade signal from a 12-bit A/D converter. Both D/A and A/D converters
are interfaced to an image-dissector camera. For each of the 16,384
(128 x 128) points, the measured gray shade signal is compared with a
known good gray shade signal (stored in memory) to determine if it is
within tolerance. If it is, the inspection continues. Otherwise, a
reject part signal is generated. One 16-bit multiply and one divide is
performed for each point. This benchmark assumes that all 16,384
points are within tolerance.

2. Block Translation: The block translation software translates each
character from an EBCDIC buffer to ASCII and stores the translated
character in an ASCII buffer. The translation operation is terminated
either when an EOT character is detected or when all characters in the
EBCDIC buffer have been translated and stored. This benchmark assumes
that the EBCDIC buffer contains 132 characters, none of which is an EOT.

3. Bubble Sort: The bubble sort program sorts a one-dimensional array
containing 16-bit integer elements into numerically ascending order
using the exchange (bubble) sort algorithm. This benchmark assumes
that the array contains 10 integers which are initially arranged in
descending order.

4. XY Transformation: The XY transformation software scales (expands or
compresses) a selcted graphics window containing 16-bit unsigned
integer XY pairs. Each X data value is offset by Xo and multiplied
by a fractional scale factor while each Y data value is offset by YO
and multiplied by the same fractional scale factor. One 16-bit
multiply and divide is performed for each of the X and Y coordinates.
This benchmark assumes the selected window contains 16,384 XY pairs.

5. Reentrant Procedure: The reentrant procedure benchmark demonstrates
processor features which are useful to implement reentrant procedures.
Three input parameters are passed by value to the procedure. Prior to
the call, the first parameter is in one of the general registers while
the second and third parameters are stored in memory locations. Upon
entry, the procedure preserves the state of the processor. It assumes
that the procedure uses all general registers. Next the procedure
allocates storage for three local variables. The procedure then adds
the three passed parameters and stores the result in a local variable.
Upon exit, the state of the processor is restored.

-27-

The results when the same routines are implemented with the 286 and compared
with the 68000 alone. and 68000 with 68451 are shown below:

Intel Assembly Language Benchmarks

8 MHz 80286 8 MHz 68000(2) 8 MHz 68000+68451(2)
o - Wait o - Wait 2 - Wait

Automated 217 ms 696 ms 827 ms
Parts Inspection (1.0) (.31) (.26)

Block Translation .415 ms .883 ms 1. 283 ms
(1.0) (.47) (.32)

Bubble Sort .494 ms .979 ms 1. 39 ms
(1.0) (.50) (.36)

Computer Graphics 285 ms 975 ms 1044 ms
XV Transform (1.0) (.29) (.27)

Reentrant Procedure 17 usec 56.5 usec 81.75 usec
(1.0) (.31) (.21)

Normalized Average (1.0) (.38) (.28)

The reasons for the performance improvements of the 286 over the 68000 are:

1. Both the automated parts inspection and the X-V transformation are
very computationally bound and use the multiply and divide
instructions extensively. Because of the fast multiply and divide
instruction execution time of 2.875-3.0 usec, the 286 shows a
significant performance advantage in these two benchmarks. The
pre-fetch queue in the Intel processor allows parallel instruction
execution and fetching providing high performance even when wait
states are added to memory accesses.

2. The block translate and the bubble sort routines perform mainly
memory accesses. In the 286, the performance improvement is caused
by the higher speed bus. allowing more bytes to be moved from one
location to another in less time.

3. The Reentrant procedure benchmark uses the PUSHA and POPA
instructions of the 80286 to quickly save the registers while the
68000 must save more and larger registers.

The two wait state execution times of the 68000 benchmarks were measured by
Intel. Across the group. adding two wait states to the 68000 increased its
O-wait execution time by 30% (ranging from 1.1 to 1.5 with an average of
1.36). A 1.3X factor was used in the remaining benchmarks to derive a 2-wait
execution time from the O-wait execution time.

-28-

CONCLUSIONS

Based on an average of the results presented in the previous sections, the
following table summarizes the relative performance of the iAPX 286 and
MC68000-MC6845l.

Relative Processor Performance

Byte Berkeley Intel EDN IEEE Micro
Sieve Pasca 1 Assembly Assembly Digital Fi lter
Program Programs Programs Programs Program

80286 1.0 1.0 1.0 1.0 1.0

68000+68451(3) .35 .35 .28 .49 .32

Each of these benchmarks, except the Intel standard benchmark, were generated
by outside parties. In all cases the iAPX 286 outperforms the MC68000 with
MC6845l. As a whole the iAPX 286 system was 2.8 times faster than the MC68000
system with comparable memory systems. Even without the MC68451 MMU, the 8
MHz 80286 at O-waits outperforms an 8 MHz MC68000 at O-waits by more than two
to one.

In MC68000 systems there is a cost vs. performance tradeoff in deciding on the
number of MMU components to use. Adding more MMU components will reduce the
number of MMU reloads which occur but at the expense of high system cost and
more board space required. The deciding factor will be the number of tasks
run and the required level of system performance.

With a fixed number of MMU entries, an MC68000 system will have more overhead
with more tasks active since the MMU must be reloaded more often. More
overhead for more work is one requirement for thrashing to occur.

In contrast, the 80286 performance will not be affected by how many tasks are
currently active. No extra overhead arises to switch tasks if more tasks are
currrently running.

For more information on these benchmarks or on the iAPX 286 contact your local
Intel sales office.

(1) Two wait state performance of the 68000 + 68451 is estimated at 1.3X
68000 0 wait state performance. This multiplier is estimated from the
Intel Assembly Language benchmarks that showed 1.36X 0 wait execution
for a 2 wait state 68000 system. This multiplier was confirmed by the
Berkeley Pascal Benchmark article which measured a 1.9X multiplier for
4 wait state 68000 execution compared to 0 wait state 68000
performance. These two measures indicate that the 1.3X multiplier is
realistic for two wait state 68000 performance.

(2) Performance numbers as reported in indicated publication.

(3) Based on estimated 2 wait state performance (reference (1)).

-29-

ALABAMA

Intel Corp
303 Williams Avenue, S W
SUite 1422
Huntsville 35801
Tel (205) 533-9353

ARIZONA

Inlel Corp
10210 N 25th Avenue,
SUite 11
PhoeniX 85021
Tel (602) 869-4980

CALIFORNIA

Intel Corp
1010 Hurley Way
SUite 300
Sacramento 95825
Tel (916) 929-4078

Intel Corp
7670 Opporlunlty Road
SUite 135
San Diego 92111
Tel (714) 268-3563

Intel Corp'
2000 East 4th Street
SUite 100
Santa Ana 92705
Tel (714) 835-9642
TWX 910-595-1114

Intel Corp'
3375 Scott Boulevard
Sanla Clara 95051
Tel (408) 987-8086
TWX 910-339-9279
910-338-0255

Intel Corp'
5530 Corbin Avenue
SUite 120
Tarzana 91356
Tel (213) 708-0333
TWX 910-495-2045

COLORADO

Intel Corp
4445 Northpark Dnve
SUite 100
Colorado Sprmgs 80907
Tel (303) 594-6622

Intel Corp'
650 S Cherry Street
SUite 720
Denver 80222
Tel (303) 321-8086
TWX 910-931-2289

CONNECTICUT

Intel Corp
36 Padanaram Road
Danbury 06810
Tel (203) 792-8366
TWX 710-456-1199

EMC Corp
48 Purnell Place
Manchester 06040
Tel (203) 646-8085

EMCCorp
393 Center Street
Wallmgford 06492
Tel (203) 265-6991

FLORIDA

Intel Corp
1500 N W 62nd Street
SUite 104
Ft Lauderdale 33309
Tel (305) 711-0600
TWX 510-956-9407

Intel Corp
SOD N Maitland
Sulle 205
Maitland 32751
Tel (305) 628-2393
TWX 810-853-9219

U.S. SALES OFFICES

GEORGIA

Intel Corp
3300 HOlcomb Bridge Road
SUite 225
Norcross 30092
Tel (404) 449-0541

ILLINOIS

Intel Corp'
2550 Golf Road
SUite 815
Rollmg Meadows 60008
Tel (312) 981-7200
TWX 910-651-5881

INDIANA

Inlel Corp
9100 Purdue Road
SUlle400
Indianapolis 46268
Tel (317) 875-0623

IOWA

Intel Corp
SI Andrews BUilding
1930 SI Andrews Drive N E
Cedar Rapids 52402
Tel (319) 393-5510

KANSAS

Intel Corp
8400 W 110th Street
SUite 170
Overland Park 66210
Tel (913) 642-8080

LOUISIANA

Industnal Digital Systems Corp
2332 Severn Avenue
SUite 202
Metairie, LA 70001
Tel (504) 831-8492

MARYLAND

Intel Corp"
7257 Parkway Drive
Hanover 21076
Tel (301) 796-7500
TWX 710-862-1944

Intel Corp
1620 Elton Road
Silver Spnng 20903
Tel (301) 431-1200

MASSACHUSETTS

Intel Corp"
27 Industrial Avenue
Chelmsford 01824
Tel (617) 256-1800
TWX 710-343-6333

E::MC Corp
381 Elliot Street
Newton 02164
Tel (617) 244-4740
TWX 922531

MICHIGAN

Intel Corp"
26500 Northwestern Hwy
SUite 401
Southfield 48075
Tei (313) 353-0920
TWX 810-244-4915

MINNESOTA

Intel Corp
3500 W 80th Street
SUite 360
Bloomington 55431
Tel (612) 835-6722
TWX 910-576-2867

MISSOURI

Intel Corp
4203 Earth City Expressway
SUite 131
Earth City 63045
Tel (314) 291-1990

NEW JERSEY

Intel Corp"
Ranlan Plaza III
Rantan Center
EdIson 08837
Tel (201) 225-3000
TWX 710-480-6238

NEW MEXICO

BFA Corp
POBox 1237
las Cruces 88001
Tel (505) 523-0601
TWX 910-983-0543

BFA Corp
3705 Westerfield, N E
Albuquerque 87111
Tel (505) 292-1212
TWX 910-989-1157

NEW YORK

Inlet Corp'
300 Motor Parkway
Hauppauge 11787
Tel (516) 231-3300
TWX 510-227-6236

Inlel Corp
80 Washington Street
PoughkeepSie 12601
Tel (914) 473-2303
TWX 510-248-0060

Intet Corp'
211 White Spruce Boulevard
Rochester 14623
Tel (716) 424-1050
TWX 510-253-7391

T-Squared
4054 Newcourt Avenue
Syracuse 13206
Tel (315) 463-8592
TWX 710-541-0554

T-Squared
7353 Pittsford
Victor Road
Victor 14564
Tel (716) 924-9101
TWX 510-254-8542

NORTH CAROLINA

Intel Corp
2306 W MeadOWView Road
SUite 206
Greensboro 27407
Tel (919) 294-1541

OHIO

Intel Corp"
6500 Poe Avenue
Dayton 45414
Tel (513) 890-5350
TWX 810-450-2528

Intel Corp"
Chagrin-Brainard Bldg, No 300
28001 Chagrin Boulevard
Cleveland 44122
Tel (216) 464-2736
TWX 810-427-9298

OKLAHOMA

Intel Corp
4157 S Harvard Avenue
SUite 123
Tulsa 74101
Tel (918) 749-8688

OREGON

Intel Corp
10700 S W Beaverton
Hillsdale Highway
SUite 324
Beaverton 97005
Tel (503) 641-8086
TWX 910-467-8741

October 1982

PENNSYI.VANtA

Intel Corp"
510 Pennsylvania Avenue
Fort Washington 19034
Tel (215) 641-1000
TWX 510-661-2071

Intel Corp"
201 Penn Center Boulevard
SUite SOlW
Pittsburgh 15235
Tel (412) 823-4970

QED ElectrOnics
300 N York Road
Hatboro 19040
Tel (215) 674-9600

TEXAS

Intel Corp"
12300 Ford Road
SUite 380
Dallas 75234
Tel (214) 241-8087
TWX 910-860-5617

Intel Corp"
7322 S W Freeway
SUite 1490
Houston 71074
Tel (713) 988-8086
TWX 910-881-2490

Industrial Digital Systems Corp
5925 Sovereign
SUite 101
Houston 71036
Tel (713) 988-S,421

Intel Corp
313 E Anderson Lane
SUlte 314
Austin 78752
Tel (512) 454-3628

UTAH

Intel Corp
268 West 400 South
Saft Lake City 84101
Tel (801) 533-8086

VIRGINIA

Intel Corp
1501 Santa Rosa Road
SUite C-7
Richmond 23288
Tel (804) 282-5668

WASHINGTON

Intel Corp
110 110tl1 Avenue N E
SUlte 510
Bellevue 98005
Tel (206) 453-8086
TWX 910-443--3002

WISCONSIN

Intel Corp
150 S Sunny slope Road
Brookfield 53005
Tel (414) 784-9060

"FIeld ApplicatIOn Location

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.i1182/5K/ME/CBM/BL

